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Abstract-A simple solution procedure of predicting the strength of adhesively bonded single-lap
and lap-shear unbalanced joints with nonlinear adhesive properties was developed by following the
global/local analysis procedure developed by Goland and Reissner (1944). Simple formulas for the
shear and peel strain energy rates of the joints were obtained in terms of the longitudinal membrane
forces and the bending moments in the adherends after neglecting the terms related to the transverse
shear forces. Two simple failure criteria were suggested and then validated by comparing to the
measured failure envelopes and correlating with the measured strengths of the lap-shear and single
lap joints. It was shown that neglecting the terms related to the transverse shear forces could yield
an over estimation of both energy rates for the single-lap joints with relatively stiff adhesive. (f)
1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Lap joint theories have been developed to analyse the stresses and strains in the adhesive
layer for adhesively bonded lap joints (Adams and Wake, 1984; Carpenter, 1991). To
predict the strength of the joints, many researchers used two types of methods, i.e., the
method based on the strength of materials and the method based on fracture mechanics.
In the material strength method, the maximum stresses or strains were determined using
coupon tests, and then these data were used as the ultimate values of the predicted stresses
or strains at a critical point or over a limited zone (Adams and Wake, 1984; Crocombe
1989; Adams, 1989, Clark and McGregor, 1993; Tong, 1994). Clark and McGregor (1993)
suggested that failure occur in adhesively bonded joints when the maximum tensile stress
exceeds its strength over a limited zone, and they reported that the new failure criterion is
applicable to a number of joint configurations. In the fracture mechanics method, the
critical energy release rate was measured and then used as the ultimate value for the
predicted energy release rate or the value of J-integral (Tong, Hamaush and Ahmed, 1989;
Anderson et at., 1988; Chai, 1988; Fernlund et at., 1994; Papini et at., 1994). Fernlund et
al. (1994) and Papini et at. (1994) proposed an engineering approach to predict the fracture
loads for adhesive joints. In this approach the in situ critical energy release rate and its
associated mode ratio were determined as the fracture envelope for a specific adhesive
system, and then used to predict fracture loads for the bonded joints. It was shown that for
the equal adherend single-lap joints, the average difference between the measured and the
predicted fracture loads was 5% only. These results indicated that measurement of the in
situ failure envelope of the adhesive system is critical in predicting joint strength.

Measurement of the in situ failure envelope is difficult because the complicated stresses
in the adhesive need to be carefully controlled, and is also expensive due to varieties of
material combinations. Hence: simple and cost-effective failure criteria are always preferred.
For a single-lap or lap-shear joint, the peel and shear stresses in the adhesive are considered
to be predominant (Adams and Wake, 1984), and therefore it is desirable to determine an
adhesive failure envelope in rerms of the two stresses or the corresponding strain energy
related quantities.

In this study a simple solution procedure was reported for predicting the strengths of
adhesively bonded unbalanced single-lap and lap-shear joints with nonlinear adhesive
properties. This procedure consists ofagiobal/local analysis and is similar to that developed
by Goland and Reissner (1944) for single-lap joints. Simple formulas for the shear and peel
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strain energy rates of the joints were obtained in terms of the longitudinal membrane forces
and the bending moments in both adherends after neglecting the terms related to the
transverse shear forces. To predict strengths of the joints, two simple failure criteria were
suggested and then validated by comparing with the measured failure envelopes of the
adhesive systems and the measured strengths of the lap-shear and single-lap joints available
in the literature. In addition, the effect of neglecting the terms related to the transverse
shear forces was also discussed.

2. MODELING AND ASSUMPTIONS

Single-lap and lap-shear joints shown in Figs 1 and 2 are considered in this study. The
adherends are modeled as cylindrically bent plates that are linearly elastic and undergo
small longitudinal displacements and large lateral deflections. The adhesive is modeled as
a layer capable of transmitting only peel (tensile) and shear stresses, and it is assumed that
the peel and shear stress-strain behaviors can be nonlinear. Evidently, this is a nonlinear
problem involving both material nonlinearity and large deformations, and it does not admit
a general analytical solution for the stresses in the adhesive layer. However, similar to the
case for double-lap joints (Tong, 1994), strengths of the joints can be approximately
determined using simple formulas in terms of the strain energy related quantities without
completely solving the nonlinear problem. To do so, we utilise the following global and
local analysis procedure:

Step I-Glob(jJ analysis: in the global analysis, by neglecting the behavior of the
adhesive layer and considering the large deflection only, we determine the global stress
resultants in the adherends, i.e. the longitudinal membrane forces, bending moments and
the transverse shear forces. For single-lap joints, these stress resultants were first given by
Goland and Reissner (1944), and recently were numerically evaluated by Tsai and Morton
(1994). For lap-shear joints, a similar analysis can be carried out to determine these stress
resultants in the adherends. An analysis was recently presented by Lai et al. (1996) to study
the effect of boundary conditions on the closed-form solutions for the lap-shear joints.

Step 2-Local analysis: in the local analysis, only the overlap parts in the joints will
be considered. The stresses in the adhesive layer are to be determined by assuming nonlinear
behavior of adhesive and using the global stress resultants in the adherends. This will be
detailed in the following section.

till Ll ~I" ~.. Lz .1
Fig. I. Configuration for a single lap joint subjected to a tensile load.
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Fig. 2. Configuration for a lap shear joint subjected to a tensile load.
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3. LOCAL ANALYSIS

3.1. Governing equations
Consider adhesive-adherend sandwiches subjected to a combination ofloading at both

ends as shown in Fig. 3(a) for single-lap joint and Fig. 3(b) for a lap-shear joint. The
sandwich consists of two adherends and a thin adhesive layer. For an infinitesimal element
shown in Fig. 4, we have the following fundamental governing equations:

For the adherend land 2, the equilibrium equations are:

dN dQl dM1 t 1-+,=,0 -+0-=0 fu- Q1 +2'=0 (la)
dx ' dx '

dN2 dQ2 dM2 t2 (lb)--, == 0 --0-=0 fu- Q2 -2'=0dx ' dx '

where Nj, M j and Qj (i = 1,2) are the longitudinal membrane forces, bending moments and
the transverse shear forces per unit width for the two adherends, respectively.
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Fig. 3. (a) Stress resultants acting on both ends of an overlap in a single-lap joint. (b) Stress

resultants acting on both ends of an overlap in a lap-shear joint.
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Fig. 4. Stresses and stress resultants of an infinitesimal element in the overlap.
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The longitudinal membrane forces N; (i = 1,2) and bending moments M i (i = 1,2) for
the adherend 1and 2 can be expressed in terms of the longitudinal displacements U; (i = 1,2)
in the x direction and the lateral deflection Wi (i = I, 2) in the z direction as follows:

du
Ni=A i-

d
"

x
d2 w·

M = -D--' (i = 1,2)
I dx2

(2)

where Ai = E;li and Di = E;tNI2 (i = 1,2) are the membrane and bending stiffness of the
adherends.

In the adhesive layer, the peel stress a and the shear stress r are assumed to be

a = a(8), r = r(y) (3)

where a(8) and r(y) are arbitrary functions of 8 and 1', respectively. The shear stress-strain
curve of the adhesive can be measured using either thick adherend lap shear test or napkin
ring shear test, while the peel (or tensile) stress-strain curve of the adhesive can be measured
using either neat adhesive tensile test or butt joint test.

The peel and shear strains in the adhesive are assumed to be constant through the
adhesive thickness, and they can be defined as (Goland and Reissner, 1944; Carpenter,
1991)

U2 -u] 1 (dW,! dW2 )" = --- + ~- t -- + t --
I t 2t] dx 2 dx (4)

Equations (1)-(4) are the governing equations for the adhesive-adherend sandwich part in
single-lap and lap-shear joints. Although the large deformed free adherend(s) and the
sandwich part has been decoupled, eqns (1)-(4) do not admit simple solutions for the shear
and peel stresses in the adhesive due to the presence of material nonlinearity in the adhesive.
However, joint strength can be approximately predicted using the strain energy density
method. In this method, both the shear and peel strain energy densities in adhesive are
calculated without completely determining the peel and shear stresses in the adhesive.

3.2. Bond shear strain energy rate
Bond shear strain energy density is the area under the shear stress-strain curve for a

given shear strain. Bond shear strain energy rate Un is defined as the product of the adhesive
thickness and the bond shear strain energy density in the adhesive. When the shear strain
energy density is not constant across the adhesive layer, bond shear strain energy rate can
be defined as the integration of the bond strain energy density over the adhesive thickness
(Chai, 1993), or, in other words, the bond shear strain energy per unit length in the overlap
direction.

To develop the expression of bond shear strain energy rate for unbalanced joints,
differentiating the shear strain y in eqn (4) with respect to x twice and using eqns (1) to (3),
we find

(5)

Multiplying 2(dyj dx) on both sides of the above equation, we can integrate the first term
with respect to (dyj dx)2 and the rest with respect to y. Using eqns (1) and (4), we can
develop the following formula for the bond shear strain energy rate
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(6)

Equation (6) can be used to calculate the bond shear strain energy rate Un at any point
along the x axis (see Fig. 3) when the stress resultants in the two adherends are known. It
is evident that the thickness and Young's modulus of both adherends can be different. In
the large brackets on the right hand side of eqn (6), the first term only requires knowledge
of the longitudinal membrane forces and the bending moments in both adherends, while
the last two involve integration of the transverse shear forces with respect to the shear
strain. It is difficult to determine the last two integrals in eqn (6) without completely solving
the whole nonlinear problem. However, as an approximation, we can drop off the last two
terms representing the contribution of the transverse shear forces and the shear strain in
the adhesive to the bond shear strain energy rate. In doing so, an explicit and simplified
linear formula for the bond shear strain energy rate can be obtained as

(7)

While it is hard to justify the effects of the neglected two terms analytically on the bond
shear strain energy rate, a numerical discussion will be presented at a later stage to illustrate
its effects. Global analysis of the single-lap and lap-shear joints can only determine the
adherend stress resultants at the ends of the overlap. Using these stress resultants, we can
approximately calculate the bond shear strain energy rate at each end of the overlap. For
example, the bond shear energy rate at the right end of the overlaps in Fig. 3 can be
calculated using the following equation

(8)

Equation (8) can be used to approximately calculate bond shear strain energy rate Un for
unbalanced single-lap and lap-shear joints using the longitudinal membrane force and the
bending moment acting on one adherend that are determined in the global analysis.

3.3. Bond peel strain energy rate
Bond peel strain energy density is defined as the area under the peel stress-strain curve

for a given peel strain. Bond peel strain energy rate U1 is defined as the product between
the bond peel strain energy density and the adhesive thickness. Similar to the definition of
bond shear strain energy rate, when bond peel strain energy density is not constant across
the adhesive thickness, bond peel strain energy rate becomes integral of the bond peel strain
energy density over the adhesive thickness.

Differentiating the peel strain e defined in eqn (4) with respect to x four times and
using eqns (1)-(3), we have

(9)

Multiplying de/dx on both sides in eqn (9), integrating by part with respect to d 3e/dx3 for
the first term and e for the last two, we find
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Evidently, the last term in the above equation is related to the bond peel strain energy rate.
Now we want to express the first two terms in terms of the global transverse shear forces
and bending moments. Using eqns (1), (2) and (4), we can rewrite the above equations as
follows

(10)

Integration by part of the last term on the r.h.s. of eqn (10) leads to the following
simplification

2 ( t 1 t 2 ) ideldx (dB)+- --- ,d -
t 2D 1 2D 2 0 dx

(11 )

It is noted that the last term on the r.h.s. of eqn (11) represents the contribution to the
bond peel strain energy when the stiffness of both adherends are different. By expressing
the shear stress, in terms of the shear forces and bending moments using the third equation
in eqns (1a) and (1b), we have

t l +t2 _ Q _ (dM I dM2 )

2 ,- I +Q2 dx + dx

Using the first equation in eqns (4) and noting that Ql + Q2 is constant, we finally rewrite
eqn (11) as follows

.,
VI = t II O'(B) dB

.0

Evidently, longitudinal membrane forces in both adherends do not contribute to the bond
peel strain energy rate. Equation (12) is an accurate expression of the bond peel strain
energy rate in terms of the bending moments, transverse shear forces in both adherends as
well as the slope of the peel strain distribution for an unbalanced lap joints. However,
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presence of the term ds/dx indicates coupling between the global and local analysis. By
dropping off the terms related to ds/dx, we have the following approximate expression for
the bond peel strain energy rate

(13)

Equation (13) reveals that bond peel strain energy rate can be approximately determined
in terms of the bending moments in both adherends. For a DCB (Double Cantilever Beam)
specimen, eqn (13) is accurate. For a single-lap joint, it was assumed (dwl/dx) = (dw2/dx)
(see Hart-Smith, 1973; Oplinger, 1991 ; Tsai and Morton, 1994) and this assumption implies
an approximation of (ds/dx) = O. For single-lap and lap-shear joints, at the end of the
overlap, see for example at the right end, eqn (13) becomes

(14)

Equation (14) unveils that bond peel strain energy rate at the right end of the single-lap
and lap-shear joints can be determined using the bending moment acting on adherend I.

It is worth pointing out that although the basic eqns (5) and (9) are nonlinear, the
final formulas for both bond shear and peel strain energy rates are linear due to the
assumptions of neglecting the contributions of the transverse shear forces to the bond strain
energy rates.

3.4. Bond strain energy rate
Bond strain energy density is defined as the sum of the area under the shear stress

strain curve for a given shear strain and the area under the peel stress-strain curve for a
given peel strain. Similarly, bond strain energy rate is defined as the product of adhesive
thickness and the bond strain energy density. For more general case, it can be defined as
the integration of the bond strain energy density over the adhesive thickness. For a given
shear and peel strain, bond strain energy rate is given by

where ljJ is the strain energy ratio defined by

ljJ = arctan (!%:)

(15)

(16)

where UI and UII are the bond peel and shear strain energy rates, respectively. The strain
energy ratio is 00 when adhesive is subjected to pure peel strain and 90° when subjected to
pure shear strain, and varies from 0-90° when subjected to combined shear and peel strains.

For single-lap and shear lap joints subjected to a given load P as shown in Figs I and
2, the bond strain energy rate at the ends of the overlap can be computed using eqn (10)
and eqns (14)-(16) in terms of the membrane forces and the bending moments. When an
appropriate failure criterion ]IS used, the failure load or strength for the joints can then be
determined.
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4. FAILURE CRITERIA AND STRENGTH PREDICTION

A failure criterion can be postulated as: bond or adhesive failure in adhesively-bonded
lap joints occurs when the maximum bond strain energy rate in the adhesive layer attains
its ultimate value Vc for a combined shear and peel strain or a strain energy ratio, namely,

V(l/J) = VcCl/J) (17)

Where VcCl/J) is the adhesive failure envelope that is defined as the critical strain energy
rate of the adhesive corresponding to various combinations of shear and peel strains. It is
desirable to measure the whole in situ failure envelope for a specific material combination.
However, measurement of such in situ failure envelope requires enormous effort and is only
applicable to the particular material combination, thus can be very expensive. For this
reason, we will use the following interactive failure criterion:

(!!!!.-)" + (!:i)fJ _1
V IIC VIC

(18)

where ':I. and fJ are real constants, and VIC and VIIC are the critical bond strain energy rates
of pure peel and pure shear, respectively. In the following section, we will evaluate the
following two simple ones:

Linear failure criterion (0: = fJ = I):

Quadratic failure criterion (':I. = fJ = 2) :

(~)2 + (!:i)2 _I
VIlC VIC

(19)

(20)

The failure criteria presented above are similar in form to the fracture criterion for bonded
joints presented by Chai (1988).

5. NUMERICAL RESULTS AND DISCUSSIONS

5. I. Comparison offailure envelopes
For a balanced single-lap joint, Tong (1996) showed that the bond shear and bond

peel strain energy rates are equivalent to the Mode II and I energy release rates, respectively,
and bond strain energy rate equals to the mixed mode energy release rate. It was also
demonstrated that the strain energy rate ratio is identical to the mode ratio of the mixed
mode I and mode II fracture. It was concluded that there exists a equivalence between the
fracture envelope Jc(l/J) (measured by Fernlund et al. (1994) and Papini et at. (1994» and
the bond failure envelope VcCl/J). Hence these fracture envelopes will be used as the bond
failure envelopes to assess the two simple failure criteria. To do this, the failure envelopes
developed using the two failure criteria as given in eqns (19) and (20) are compared to the
measured in situ failure envelopes VcCt/J) available in the literature.
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Fig. 5. Failure envelopes. U, vs phase angle ljJ, for 7075-T6 aluminum adherends bonded with
Cybond 4523GB epoxy adhesive system (test curve taken from Fernlund et al., 1994).

Figure 5 depicts the values of Ue computed using eqns (19) and (20) with UIe = 212
J/m2 and UIle = 575 J/m2 vs the phase angle. The present calculated failure envelopes are
also compared with the in siru mixed failure envelope measured by Fernlund et at. (1994).
It is shown that Ue given by the quadratic is always larger than the measured, and Ue
computed using the linear criterion is larger than the measured when the phase angle is less
than about 43", and is less than the measured when the phase angle is larger than 43°. For
the linear criterion, the relative deviations are between - 20 and 25%, while for the
quadratic criterion, the relative difference can be as high as 40%. It is also revealed that
the linear criterion tends to be more appropriate when the phase angle is larger than 34°. It
is noted that the quadratic criterion over predict Ue and thus, can result in an unconservative
failure prediction.

Figure 6 plots the bond strain energy rate Ue computed using eqns (19) and (20) with
Ure = 794 J/m2 and Une = 5605 J/m2 vs the phase angle. The in situ mixed type failure
envelope measured by Papini et at. (1994) is also plotted in Fig. 6 for comparison. It is
noted that bond strain energy rate Ue predicted by the quadratic criterion in eqn (20) is
not larger than the measured when the phase angle is less than 58', and is larger than the
measured when the phase angle is larger than 58 e

• The value of Ue computed using the
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Fig. 6. Failure envelopes, U, vs phase angle ljJ, for 7075-T6 aluminum adherends bonded with
Permabond ESP 310 adhesive system (test curve taken from Papini et al., 1994).
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linear criterion is larger than the measured when the phase angle is less than about 27°, and
is less than the measured when the phase angle is larger than 27°. In this case, there is little
difference between the quadratic and the linear criterion when the phase angle is less than
40°. When the phase angle is greater than 40°, the quadratic criterion tends to be more
appropriate than the linear criterion as it is more close to the measured curve.

It is noted that the present two simple failure criteria given in eqns (19) and (20) can
be used to generate approximate failure envelopes. In this case, only the critical values of
bond strain energy rate subjected to pure peel and shear need to be measured.

5.2. Comparison ofslrength for lap-shear and single-lap joints
For a given single-lap or lap-shear joint subjected to a given load as shown in Fig. 1

or Fig. 2, we can determine the longitudinal membrane forces and the bending moments at
the ends of the overlap and then calculate the shear and peel strain energy rates. By using
the failure criteria given by eqns (19) and (20) and the measured in situ envelopes (Fernlund
et al.; 1994; Papini et al., 1994), we can determine the strength of the joint after following
an iterative numerical procedure. The predicted strengths are then compared with the
measured ones available in the literature.

Table 1 gives the fracture loads for the lap-shear joints predicted using the present two
failure criteria and compares with the measured fracture loads taken from Fernlund et al.
(1994). Between the two criteria, the linear criterion tends to give the smallest average
difference 5.6%, while the quadratic criterion yields an average difference of 17.1 %.
Evidently, linear criterion is appropriate for predicting the strength for the lap shear joints.
This is because the linear criterion fits best to the measured failure envelope in Fig. 5 when
the theoretical phase angle varies from 49.1-90° for pinned equal adherend lap shear joints
(Papini et al., 1994).

Table 2 compares the fracture loads predicted using the present two failure criteria
and the measured fracture loads for the single-lap joints made of the 7075-T6 aluminum
adherends bonded with Cybond 4523GB epoxy adhesive system (Fernlund et al., 1994). It
is noted that the quadratic criterion gives the average difference of 11.9%, and the linear
yields an average difference of 5.9%. It is thus found that the linear criterion seems to be
the appropriate one [i)r these joints.

In Table 3, the measured and predicted fracture loads are tabulated for the single-lap
joints made ofthe 7075-T6 aluminum adherends bonded with Permabond ESP 310 adhesive

Table I. Comparison of predicted and measured fracture loads (N/mm) for equal adherend lap shear joints
(II = 12 = 12.54 mm, width was 20 mm)

Geometry Measured and predicted fracture load using various
(mm) types of criteria [see eqns (19) and (20)1

L Test* In silut Linear Quadratic

160 187 1100 971 (-117) 965 (-12.3) 1174 (6.7)
165 185 968 962 (-0.6) 955 (-1.3) 1164 (20.3)
187 159 876 883 (0.8) 876 (0.0) 1071 (22.3)
182 154 915 874 (-4.5) 866 (- 5.4) 1059 (15.7)
162 180 935 953 (1.9) 947 (1.3) 11 53 (23.3)
143 197 1092 1013 (-7.2) 1008 (-- 7.7) 1221 (11.8)
213 127 726 786 (8.3) 777 (7.0) 951 (31.0)
154 192 1044 988 (-5.4) 982 (- 5.9) 1194 (14.4)
143 196 1081 1011 (-6.5) 1006(-6.9) 1218 (12.7)
220 118 769 758 (-1.4) 750 (- 2.5) 916 (19.1)
133 210 1226 1055 (-13.9) 1050 (- 14.4) 1267 (3.3)
187 157 966 878(-9.1) 871 (-9.8) 1065 (10.2)
242 101 720 703 (-2.4) 695 (- 3.5) 846 (17.5)
168 184 960 957 (-0.3) 950 (-1.0) 1158 (20.6)
240 112 695 735 (5.8) 727 (4.6) 888 (27.8)

Average difference E (%) (5.3) (5.6) (17.1)

* Data taken from Pernlund el al. (1994).
t Results obtained using failure envelopes given by Pernlund el al. (1994).
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Table 2. Comparison of predicted and measured fracture load (N/mm) for equal adherend single lap joints
(II = 12 = 12.5 mm, width was 20 mm)

Measured and predicted fracture load using various
Geometry (mm) types of criteria [see eqns (19) and (20))

L, I L, Test- In silut Linear Quadratic

141 86 125 572 533 (-3.3) 546 (-4.5) 646 (12.9)
144 82 125 555 545 ( -1.8) 539 (-2.9) 638 (14.9)
178 82 141 547 522 (-4.6) 515(-5.8) 610 (11.5)
176 86 138 525 527 (0.4) 521 (-0.8) 618 (17.7)
245 75 80 438 419 (-4.3) 414 (- 5.5) 492 (12.3)
265 55 80 391 385 ( -1.5) 380 (-2.8) 449 (14.8)
216 98 88 497 475 (-4.4) 469 (- 5.6) 561 (12.9)
203 62 135 551 470 (-14.7) 464 (-15.8) 549 (-0.4)
185 109 97 544 521 (-4.2) 514(-5.5) 615 (13.0)
219 74 96 469 445(-5.1) 439 (-6.4) 522 (11.3)
167 127 96 565 565 (0.0) 558 (-1.2) 670 (18.6)
134 56 108 530 491 (-7.4) 485 (-8.5) 570 (7.5)
202 105 57 496 453 (-8.7) 447 (-9.9) 533 (7.5)
196 111 94 559 514 (-8.1) 507(-9.3) 607 (8.6)
216 92 82 525 458 (-12.8) 452 (-13.9) 540 (2.9)
148 115 106 574 576 (0.3) 569 (-0.9) 679 (18.3)
148 115 106 595 576 (-3.2) 569 (-4.4) 679 (14.1)
148 115 106 587 576 (-1.9) 569(-3.1) 679 (15.7)

Average difference E (%) (4.8) (5.9) (11.9)

- Data taken from Pernlund el al. (1994).
t Results obtained using failure envelopes given by Pernlund el al. (1994).

Table 3. Comparison of measured and predicted fracture loads (N/mm) for equal-adherend single lap joints
(II = I, = 12.7 mm)

Measured and predicted fracture loads using various
Geometry (mm) types of criteria [see eqns (19) and (20))

L I I L, Test- In situt Linear Quadratic

142 80 140 1408 1514 (7.5) 1289 (-8.5) 1429 (1.5)
142 80 140 1352 1514 (12.0) 1289 (-4.7) 1429 (5.7)
142 80 140 1361 1514 (11.2) 1289 (- 5.3) 1429 (5.0)
142 80 140 1405 1514 (7.8) 1289 (- 8.3) 1429 (1.7)
142 80 140 1450 1514 (4.4) 1289(-11.1) 1429 (-1.4)
227 81 148 1478 1452 (- 1.8) 1222 (-17.3) 1361 (-7.9)
227 81 148 1481 1452 (- 2.0) 1222 (-17.5) 1361 (-8.1)
227 81 148 1524 1452 (-4.7) 1222 (-19.8) 1361 (-10.7)
254 54 148 1379 1284 (- 6.9) 1083 (-21.5) 1195 (-13.3)
249 59 148 1373 1315 (-4.2) 1108 (-19.3) 1225 ( - 10.8)
227 64 17l 1284 1367 (6.5) 1157 (-9.9) 1279 (-0.4)
172 117 172 1654 1721 (4.1) 1458 (- 11.9) 1638 (-1.0)
200 90 171 1477 1534 (3.9) 1297 (-12.2) 1445 (-2.2)
237 53 17l 1308 1301 (-0.5) 1102(-15.7) 1214 (-7.2)
197 82 192 1493 1496 (0.2) 1268(-15.1) 1408 (- 5.7)
166 140 165 1768 1867 (5.6) 1581 (-10.6) 1791 (1.3)
203 104 164 1647 1615(-1.9) 1362 (-17.3) 1526(-7.3)
230 80 164 1457 1457 (0.0) 1229 (-15.6) 1367 (-6.2)

Average difference E (%) (4.7) (13.4) (5.4)

- Data taken from Papini el al. 0994).
t Results obtained using failure envelopes given by Papini el al. (1994).

system (Papini et ai., 1994). It is shown that the linear criterion gives an average difference
of 13.4%, while the quadratic results in an average differences of 5.4% for these joints.
Clearly the quadratic criterion seems to be appropriate for predicting the strengths of the
joints manufactured using the adhesive system.
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6. EFFECT OF TRANSVERSE SHEAR FORCE

In the above sections, we neglected the terms related to the transverse shear forces
when deriving the simple formulas for the bond shear and peel strain energy rates. However,
it was not clear to what extent the terms related to the transverse shear forces affect the
prediction of these strain energy rates. In this section, a numerical evaluation will be given
for adhesively bonded single-lap joints subjected to axially applied load. For simplicity, we
consider the case of linear elastic adhesive behavior. In this case, the Goland and Reissner's
solutions (1944) for both shear and peel stresses can be employed to calculate the strain
energy rates and then used together with the finite element analysis (FEA) to benchmark
the effect of these neglected terms related to the transverse shear forces.

Let us consider adhesively bonded balanced single-lap joints subjected to applied
tensile force P as shown in Fig. 1. The free lengths of the joints are assumed to be
L I = L 2 = 100 mm. The overlap length is taken as 1= 80 mm. Both adherends have the
same thickness of II = 12 = 1 mm. The thickness of adhesive layer is 1= 0.2 mm. We assume
that the adhesive exhibits a linear elastic behavior with Young's modulus of E = 2.150 GPa
and Poisson ratio of v = 0.34. The two adherends have the same Young's modulus of
EI = E2 = 70 GPa and Poisson ratio of VI = V2 = 0.3. Before presenting the results, let us
introduce the follo\\-ing parameter used by Goland and Reissner (1944)

(21)

where G is the shear modulus of the adhesive. To study the effect of this parameter {3, the
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Young's modulus of the adherends is varied from 70-420 GPa in all calculations. Obviously,
as the Young's modulus of the adherends increases, the value of parameter f3 decreases,
and thus the adhesive layer becomes mor flexible relative to the adherends.

In the calculations, the general expressions for the shear and peel stresses developed
by Goland and Reissner (1944) are used to calculate the shear and peel strain energy rates,
respectively. The present results are computed using eqns (8) and (14), and the longitudinal
membrane forces and the bending moments determined via the global analysis of the joints.
In the finite element analysis, 2-D plane strain models including large deflections are
established using 4-node quadrilateral elements in the Strand 6 (G + 0, 1993). In the first
meshing scheme, in the vicinities of the overlap ends, one element in the thickness direction
is used to model the adhesive layer and four elements are utilised in the thickness direction
to model each adherend. In the second meshing scheme, two elements across the adhesive
thickness near the end of the adhesive layer were used (Tsai and Morton, 1994). However,
there was a very small difference noted between the two schemes. Thus in the following
discussion, we only report the results obtained using the first meshing scheme.

Figures 7 and 8 depict the plots of the shear and peel strain energy rates vs the applied
load for the single-lap joints with f31/2t = 27.1 and 15.6, respectively. It is clearly shown
that the present results for both strain energy rates are less than those predicted using the
Goland and Reissner's solution and larger than the FEA results. The differences between
the present results and the other two predictions are very small when the applied load is
low and becomes large when the applied load is increased. As the load is increased, the
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present results of the peel strain energy rate are close to the FEA results for both
{3 = 1/2t = 27.1 and 15.6, whereas, the present results for the shear strain energy rate are
close to the Goland and Reissner's results when {31/2t = 27.1. The effect of parameter {31/2t
on both strain energy rates is shown in Figs 9 and 10 for the single-lap joints subjected to
the applied load of P = 300 Nand 600 N, respectively. It is noted that both strain energy
rates increase with the parameter {31/2t, and the present results are less than those calculated
using the Goland and Reissner's solutions and are larger than the FEA results for almost
all values of {31/2t. When comparing with the FEA results, the present results tend to be
better than those computed using the Goland and Reissner solutions for both peel and
shear strain energy rates. When parameter {31/2t is small, namely, for these joints with
relative flexible adhesive, there is a good agreement between present results and the FEA
ones; when parameter [31/2t is large, e.g., for the joints with relatively stiff adhesive, the
present results for both strain energy rates tend to be larger than the FEA ones, and the
deviation becomes large as the applied load is increased. Thus, when neglecting the terms
related to the transverse shear forces, the shear and peel strain energy rates can be predicted
reasonably well using eqns (10) and (14) for the joints with relatively flexible adhesive.
From these results. it is noted that the terms related to the transverse shear forces has a
slight effect on the predictions of the shear and peel strain energy rates for the joints with
relatively flexible adhesive, and has a noticeable effect on the calculations of both strain
energy rates when the adhesive is relatively stiff.
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7. CONCLUSIONS

This paper presented 3L simple solution procedure for predicting the strengths of
adhesively bonded single-lap and lap-shear joints with nonlinear adhesive properties. Fol
lowing a global/local analysis procedure, simple formulas were developed for the shear and
peel strain energy rates in the adhesively bonded joints with unbalanced adherends. The
shear and peel strain energy rates were expressed in terms of the longitudinal membrane
forces and the bending moments in the adherends after neglecting the terms related to the
transverse shear forces. Two simple failure criteria were suggested and then evaluated by
comparing to the measured in situ failure envelopes and the measured strengths of the lap
shear and single-lap joints. It was shown that neglecting the terms related to the transverse
shear forces has a slight effect on predictions of both strain energy rates when the adhesive
is relatively flexible, and tends to yield a noticeable effect on both strain energy rates when
the adhesive is relatively stifl'.
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